

Robotik I: Einführung in die Robotik Umweltmodellierung

Tamim Asfour, Rüdiger Dillmann

KIT-Fakultät für Informatik, Institut für Anthropomatik und Robotik (IAR) Hochperformante Humanoide Technologien (H²T)

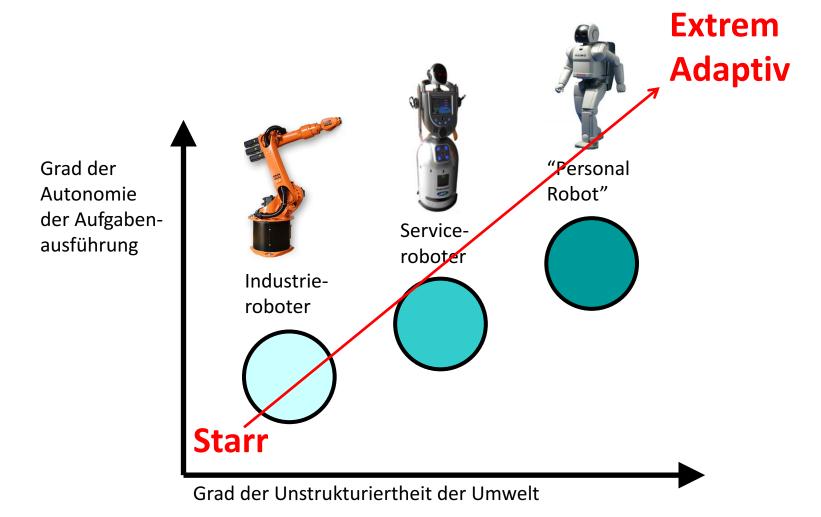
Inhalt

- Motivation: Adaptive Roboteraufgaben
- Objektmodelle
 - Geometrische Beschreibung
 - Zusätzliche Eigenschaften
- Szenenmodelle

Bisher: Starre Roboteraufgaben

- Bisher in VL: un- oder marginal flexible Roboteraufgaben
 - Feste Trajektorie programmiert:
 - Positionsregelung
 - Eventuell lokale Kraftregelung
 - Benötigte Modelle für Programmierung und Regelung:
 - Kinematisches Modell
 - Dynamisches Modell
 - Benötigte Sensoren:
 - Gelenkencoder
 - (eventuell) Kraft-Momenten-Sensor
 - Bahn absolut fest oder nur lokal-adaptiv, repetitiv ausgeführt

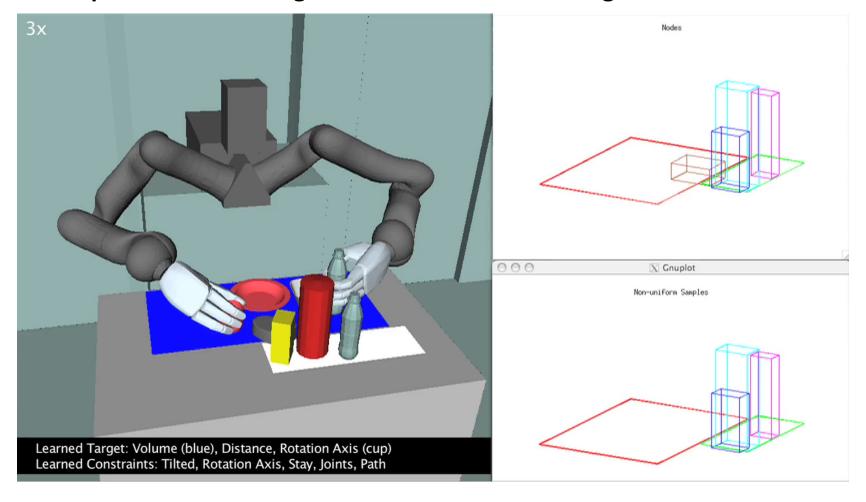
Starre Roboteraufgaben



Adaptionsanforderungen

Adaptive Roboteraufgaben

Bei adaptiven Roboteraufgaben andere Voraussetzungen!


- Keine feste Trajektorie programmierbar
 - Trajektorie muss flexibel vom Roboter bestimmt werden
 - Benötigte Modelle für Programmierung und Regelung:
 - Kinematisches Modell
 - Dynamisches Modell
 - + Umweltmodelle
 - + Aufgaben/Planungsmodelle
 - Benötigte Sensoren:
 - Gelenkencoder
 - (eventuell) Kraft-Momenten-Sensor
 - + visuelle und eventuell taktile Sensoren
- Bahn völlig frei, flexibel, nicht-repetitiv ausgeführt

Adaptive Roboteraufgaben

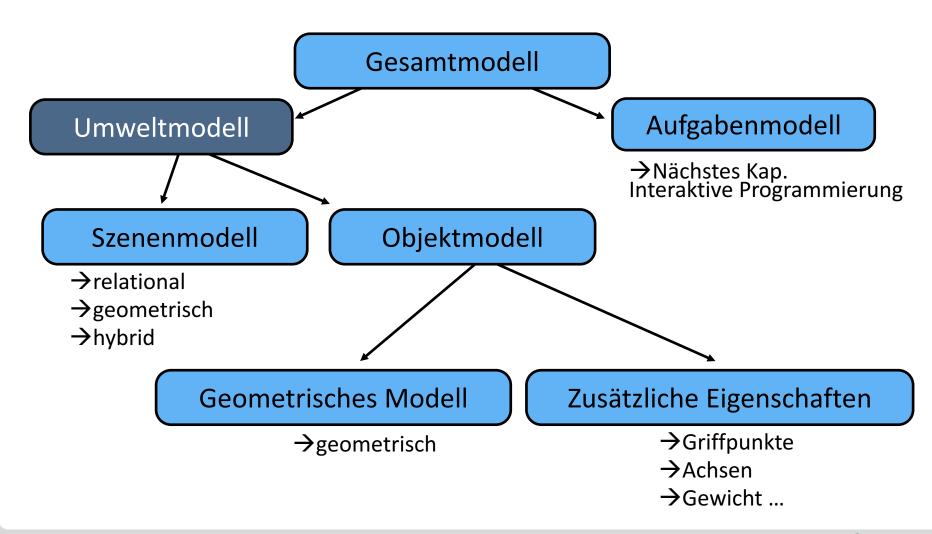
Bei adaptiven Roboteraufgaben andere Voraussetzungen!

Anforderungen für Adaption

Zusätzliche Anforderungen gegenüber starren Aufgaben

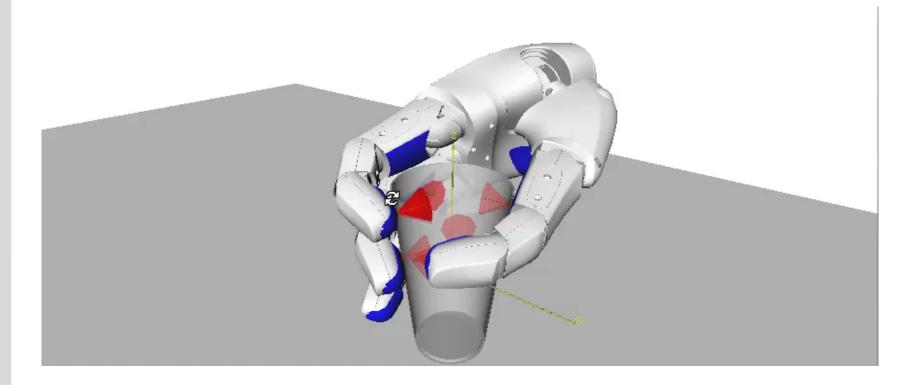
- 1. Visuelle und (eventuell) taktile Sensorik zur Umwelterfassung:
 - Zentrales Thema der Vorlesung Robotik 3 im SoSe
- 2. Datenrepräsentation der Umgebung/Umwelt:
 - Diese Vorlesung
- 3. Planungsmethoden zur Aufgaben/Bewegungsberechnung
 - Robotik 1
 - VL9: Bahnplanung
 - VL10: Greifplanung
 - VL12: Interaktive Programmierung

Übersicht Modelle

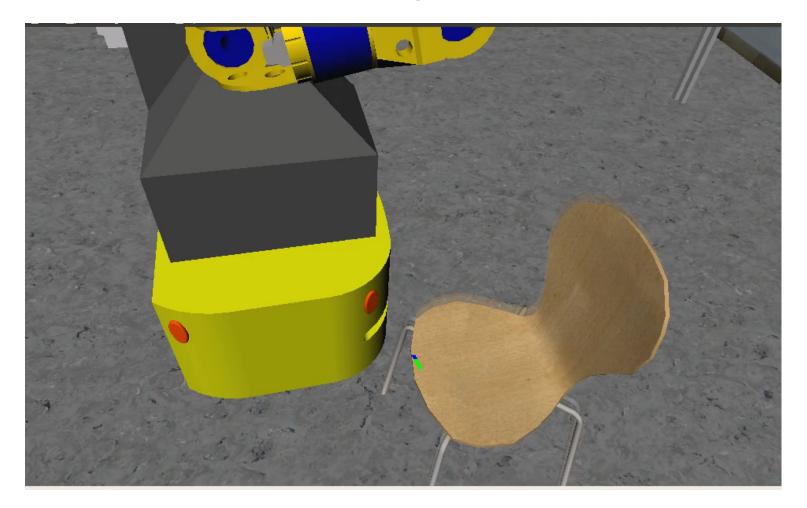

Verschiedene Arten von Modellen in der Robotik

- 1. Modell der Kinematik (Manipulator, mobile Plattform)
- 2. Modell der Dynamik (Manipulator, mobile Plattform)
- 3. Modelle der Sensoren
- 4. <u>Umweltmodell</u> (Umgebung: Einzelobjekte und Szenen)
- 5. Aufgabenmodell (Bewegungen und abstrakte Aufgaben)

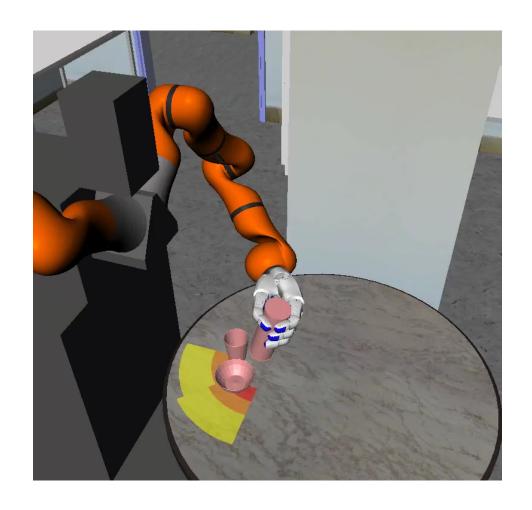
Übersicht Umweltmodellierung


Inhalt

- Motivation: Adaptive Roboteraufgaben
- Objektmodelle
 - Geometrische Beschreibung
 - Zusätzliche Eigenschaften
- Szenenmodelle



Karlsruhe Institute of Technology


Simulation der Effekte von Handlungen auf die Umwelt

Karlsruhe Institute of Technology

Simulation der Effekte von Handlungen auf die Umwelt

Anwendungsgebiete für das geometrische Modell

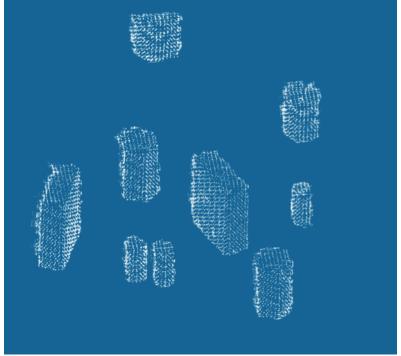
- Umweltwahrnehmung (Live)
 - Objektklassifizierung
 - Objektlokalisierung
 - Bewegungserkennung/klassifikation des Menschen
- Bewegungsplanung (Live, offline)
 - Pfadplanung (mobile Systeme)
 - Bewegungsplanung (Manipulatoren)
 - Greifplanung und Planung von Inhandmanipulationsaufgaben
- Abstrakte Aufgabenplanung (Live, offline)
- Dynamische Effektsimulation und –prädiktion (Live, offline)
- Arbeitsraum/Anlagenplanung (Offline)

Übersicht Volumenmodelle

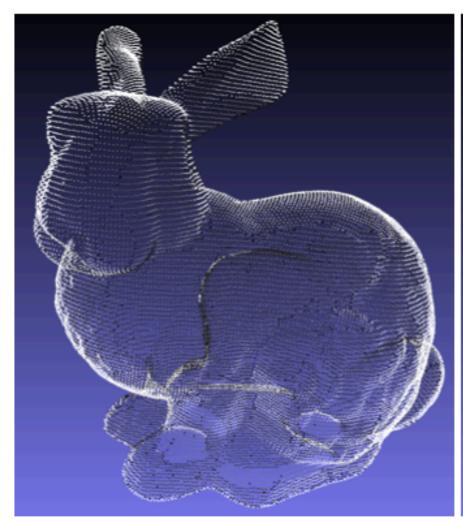
- Punktwolken
- Approximative Oberflächenmodelle (B-Rep)
 - Dreiecksflächen (Meshes)
 - Vierecksflächen
 - Bezierflächen
- Approximative Zellenbelegung
 - Voxel
 - Octree
- Analytisch-parametrische Modelle
 - Constructive Solid Geometry (CSG)

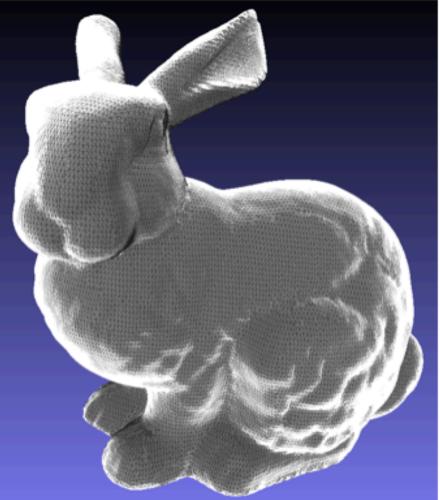
Punktwolken

Punktwolken (Point Clouds) sind das einfachste Objektmodell


- Modell ist eine beliebige Menge aus Raumpunkten
- Daten direkt aus aktuellen Tiefensensoren (3D-Sensoren)
- Objekte nur implizit, indirekt modelliert
- Mehrdeutigkeiten
- Hochgradig approximativ
- Datenlücken durch Modellform
- Grundlage für weitergehende Objektmodelle
 - z.B. Erkennung/Lokalisierung von Objekten im Raum

Punktwolken (Beispiele)





Punktwolken (Beispiele)

(a) Stanford Bunny dargestellt mit Punkten

(b) Stanford Bunny dargestellt mit Flächen

Approximative Oberflächen

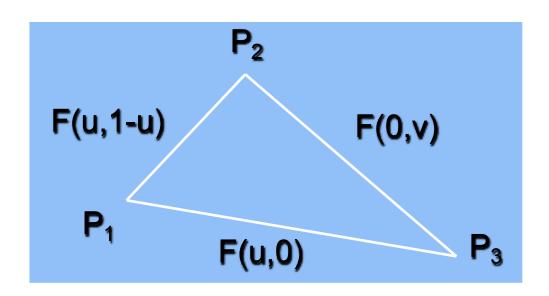
Bildung einer großen Fläche aus einem Netz ("Mesh") von einfachen Einzelflächen, z.B. Dreiecke, Vierecke

Vorteile:

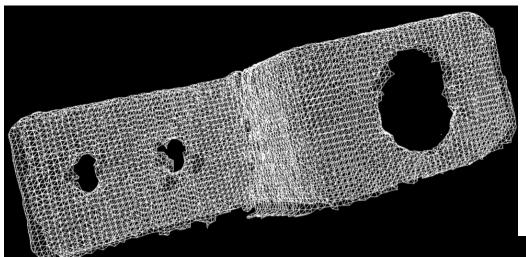
- + Definition sehr einfach
- + einfache Algorithmen

Nachteile:

- hoher Speicherbedarf
- hoher Rechenaufwand



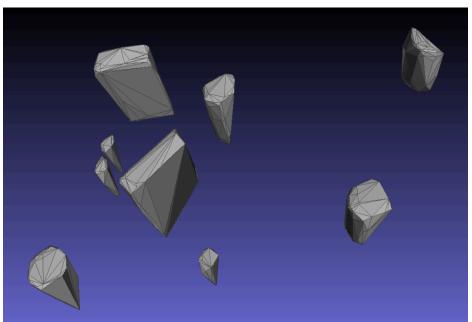
Dreiecksflächen


- Approximation von Freiformflächen: Die einfachste Fläche ist die Dreiecksfläche.
- Definition: Gegeben seien 3 Punkte im Raum P_1 , P_2 , P_3 . Damit hat die Fläche folgende Gleichung:

$$F(u,v) = u \cdot P_1 + v \cdot P_2 + (1-u-v) \cdot P_3 \text{ mit } 0 \le u, v, u+v \le 1.$$

Erzeugung von Dreiecksflächen: Beispiel

Mesh aus Laserdaten (Punktwolke) rekonstruiert

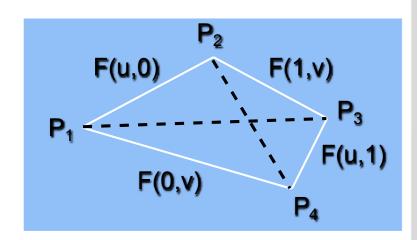

Mesh aus
CAD-Modell
(analytisches Modell)
generiert

Erzeugung von Dreiecksflächen: Beispiel

Rekonstruktion aus Punktwolken

Bilineare Vierecksflächen

■ Definition: Gegeben sind 4 Punkte im Raum P_1 , P_2 , P_3 , P_4 . Damit wird die Fläche definiert durch:


$$F(u,v) = (1-u)(1-v) \cdot P_1 + (1-u)v \cdot P_2 + u(1-v) \cdot P_3 + uv \cdot P_4$$

mit $0 \le u \le 1$, $0 \le v \le 1$.

Vorteil:

- + Flächenelemente können gekrümmt sein
- ⇒ weniger Gitterpunkte bei gleich guter Approximation

Nachteil:

Rechnen mit gekrümmten
 Flächen ist aufwendig

Bezierflächen

Erweiterung des Ansatzes der Bezierkurven

Definition: Gegeben ist ein Gitter von Führungspunkten P_{ij} $0 \le i \le N$ und $0 \le j \le M$

Damit ist die Fläche beschrieben durch

$$F(u,v) = \sum_{i=0}^{N} \sum_{j=0}^{M} P_{ij} \cdot B_{i,N}(u) \cdot B_{j,M}(v)$$
mit
$$B_{i,N}(u) = (1 - u)B_{i,N-1}(u) + u \cdot B_{i-1,N-1}(u)$$

$$B_{j,M}(v) = (1 - v)B_{j,M-1}(V) + v \cdot B_{j-1,M-1}(v)$$

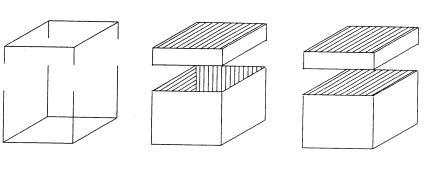
Die $B_{i,N}$ bzw. $B_{j,M}$ heißen auch Bernsteinpolynome.

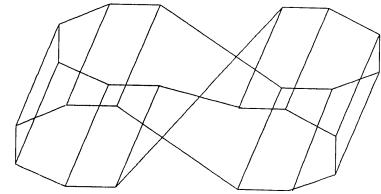
Inhalt

- Motivation: Adaptive Roboteraufgaben
- Objektmodelle
 - Geometrische Beschreibung
 - Kantenmodell
 - Flächenmodell
 - Volumenmodell
 - Zusätzliche Eigenschaften
- Szenenmodelle

Kantenmodell

Reines Kantenmodell ohne weitere Informationen

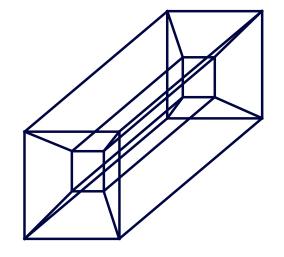

- Nur die Kanten werden gespeichert, d.h. Punkte und
- Verbindungen (Gerade, Polygonzug, Bezierkurve, ...)

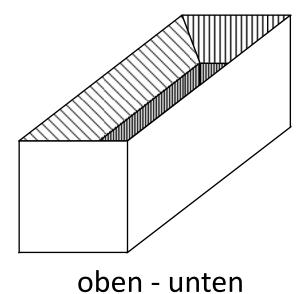

Vorteile:

- + einfache Daten
- + wenige Daten

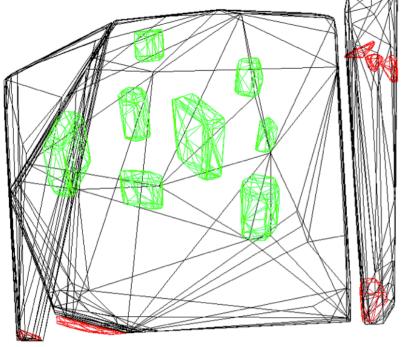
Nachteile:

- Mehrdeutigkeiten
- hoher Eingabeaufwand
- keine Kollisionsberechnung
- kein Schnitt



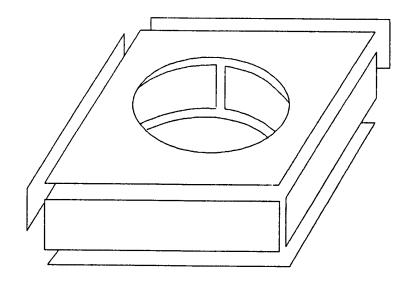


Kantenmodell


links - rechts

Kantenmodell: Beispiel

Flächenmodell

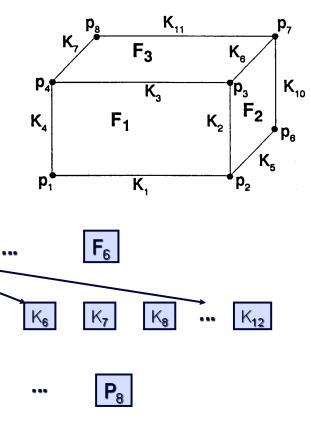

Speicherung von Kanten & Oberflächen (Dreiecke, Bezier)

Vorteile:

- + effiziente Verfahren
- + entspricht dem Vorgehen während der Modellierung
- + schnelle Kollisions- und Abstandsberechnung

Nachteile:

- hoher Eingabeaufwand
- Darstellung aufwendig
- Problem bei Schnittoperationen
- Inkonsistenzen möglich



Boundary Representation

Organisationsform der geometrischen Flächenmodelle

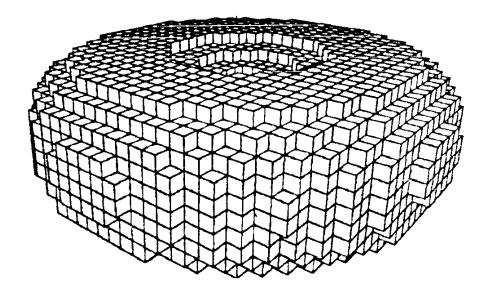
- Hierarchische Darstellung eines Objektes durch begrenzende Elemente, i.d.R. Kanten oder Flächen.
- Elemente eines Quaders im Flächenmodell
- Elemente:
 - Q: Quader
 - F_i : $i \in \{1, ..., 6\}$: Flächen
 - K_i : $i \in \{1, ..., 12\}$: Kanten
 - P_i : $i \in \{1, ..., 8\}$: Ecken

K₅

 P_{A}

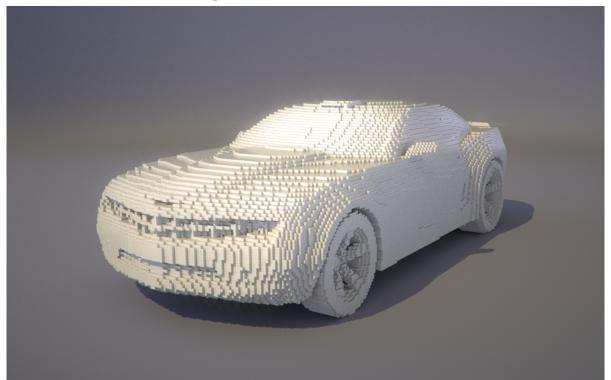
Boundary Representation: Vorteile

Aus topologischer Struktur Informationen über


- Welche Flächen gehören zum Objekt?
- Welche Kanten gehören zur Fläche?
- Zu welchem Objekt gehört eine Fläche?
- Zu welchem Objekt gehört eine Kante?
- Welche Flächen stoßen aneinander?
 - → kantenbasierte Objekterkennung

Approximative Zellenbelegung

- Objekte werden aus disjunkten Elementarzellen aufgebaut. Verwendung finden einfache geometrische Objekte z,B. Tetraeder, Quader, ...
- Benutzt in der Strukturanalyse mit Finite-Elemente-Methoden (FEM).



Voxeldarstellung

Äquidistante Raumunterteilung in 3D

- Speicherungsmöglichkeiten
 - 0: nicht-belegt / 1: belegt / 2: weiß-nicht (unbekannt)
 - Wahrscheinlichkeit belegt 0.0 bis 1.0

Voxeldarstellung

Äquidistante Raumunterteilung in 3D

Vorteile:

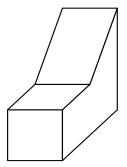
- + Einfache Darstellung
- + Berechnungen homogen, parallel auf GPU
- + Raycasting u.ä. einfach parallelisierbar

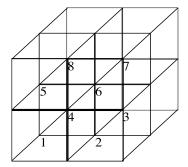
Nachteile:

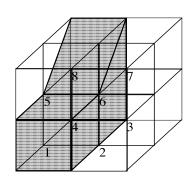
- Festes Gitter, gleicher Detaillierungsgrad sowohl bei großflächigen als auch bei feiner aufgelösten Strukturen
- Kartengröße/Präzision durch Speicher begrenzt

Octree

Octree: effizientere Topologie als Voxel

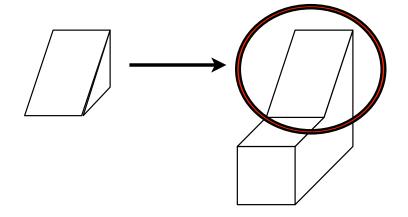

- Der Raum wird in mehrere Zellen unterteilt (i.d.R. 8 Zellen: "oct-tree").
- Zelle komplett vom Objekt belegt → als "belegt" markieren
- Wenn die Zelle nur teilweise belegt ist, dann wird auf diese Zelle das Verfahren rekursiv angewendet. Ansonsten ist die Zelle leer.
- Die Rekursion terminiert bei einer vorbestimmten minimalen Zellgröße.
- Teilbelegte kleinste Zellen werden als belegt markiert.

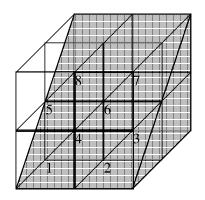

Octree (Beispiel)


Körper

Zerlegung

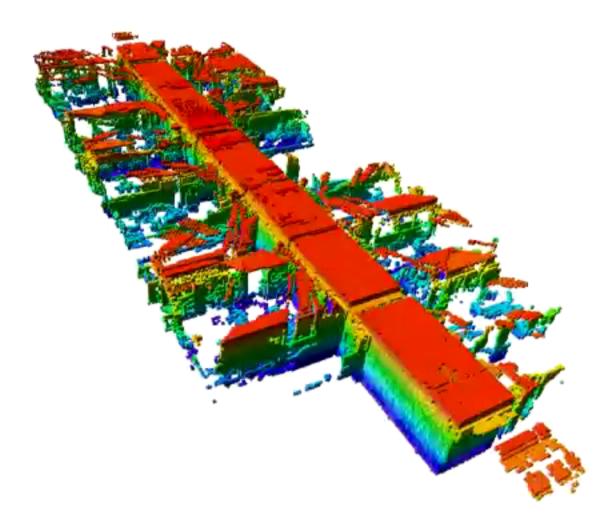
1. Zerlegung


Zelle 1	belegt
Zelle 2	frei
Zelle 3	frei
Zelle 4	belegt
Zelle 5	frei
Zelle 6	frei
Zelle 7	frei
Zelle 8	teilbelegt


Octree (Beispiel)

Restkörper

2. Zerlegung



Zelle 1	teilbelegt
Zelle 2	teilbelegt
Zelle 3	belegt
Zelle 4	belegt
Zelle 5	frei
Zelle 6	frei
Zelle 7	teilbelegt
Zelle 8	teilbelegt

Octree: Octomap

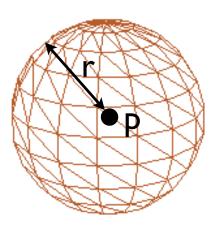
http://octomap.github.io

Ottree: Octomap

Karlsruhe Institute of Technology

Octomap (BSD Lizenz) für Manipulation:

http://octomap.github.io



Analytisch-parametrische Modelle

Beispiel analytisch gegebene Fläche

- Beispiel: 3D-Kugel
- Exaktes Modellierungsverfahren
- Vorteile:
 - + Geschlossene Darstellung (wenig Speicherbedarf)
 - + Analytische Darstellung erlaubt einfache Rechenverfahren (z.B. Schnitt von Ebenen / Kugeln→ schnelle Kollisionsberechnung)
- Nachteil:
 - Wenige Flächen sind analytisch darstellbar

Parametrische Volumenmodelle

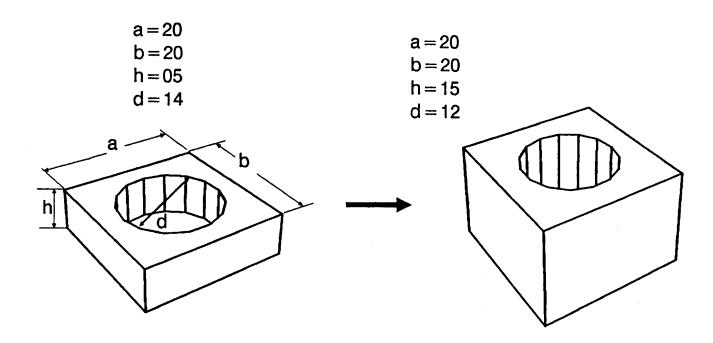
Grundkörper und topologische Operationen auf diesen (Schnitt, Vereinigung,

...) werden abgespeichert.

Vorteile:

- + eindeutigeObjektbeschreibung
- + geringer Eingabeaufwand
- + Ergebnis von Operationen sind korrekte Objekte

Nachteile:


- hoher Implementierungsaufwand
- Einbindung von Freiformflächen schwierig

Parametrische Volumenmodelle

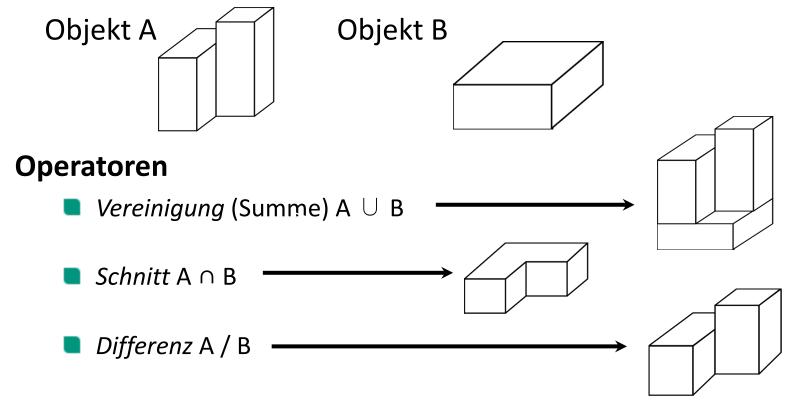
- Objekte sind bereits vorhanden und können durch Angabe von Parametern angepasst werden (Varianten).
- Nonsistenzprüfungen sind notwendig! (d < a)

Constructive Solid Geometry (CSG)

Es gibt eine Menge von einfachen Grundkörpern, die parametriert werden können und auf denen verschiedene Operationen definiert sind.

Grundkörper	Parameter	Skizze
Quader	Länge, Breite, Höhe	Breite Höhe Länge
Prisma	Länge, Radius, Facetten	Facetten Länge Radius
Zylinder	Länge, Radius	Länge

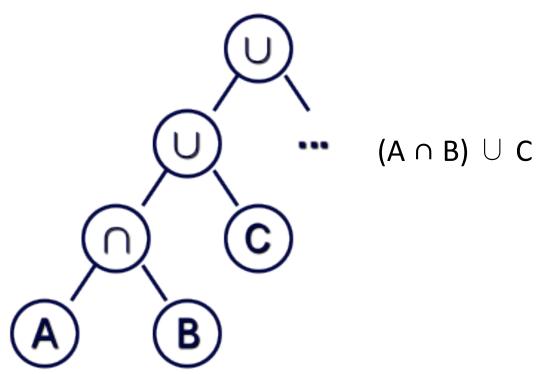
Constructive Solid Geometry (CSG)



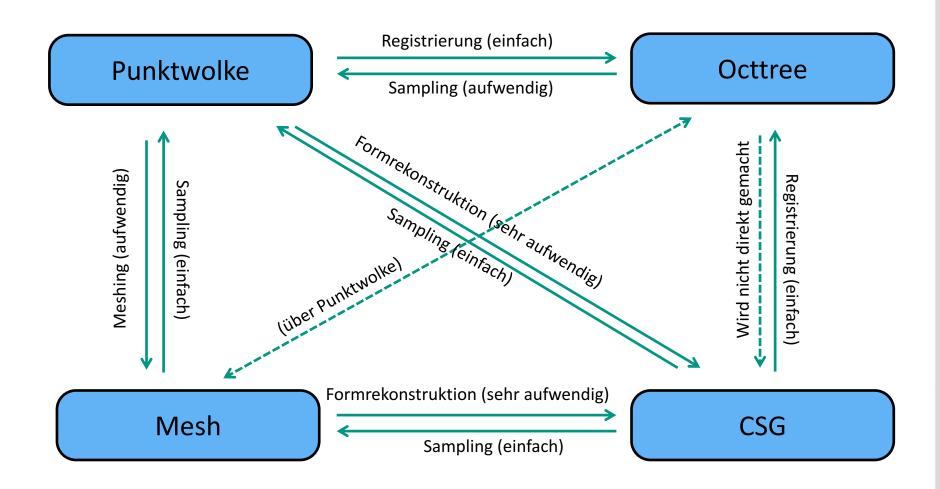
Grundkörper	Parameter	Skizze
Kegel	Länge, Radius a, Radius b	Radius a Länge Radius b
Ellipsoid	Radius a, Radius b, Radius c	Radius b Radius c Radius a
Rotationskörper	Achse, Kontur P9 Kontur P8 P6 P3 P2 P1 P1 P1 P1	Rotationsachse

CSG: Operatoren

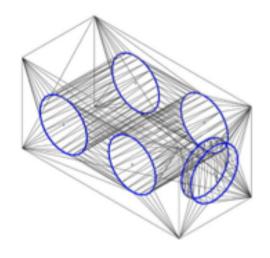
Sweep:

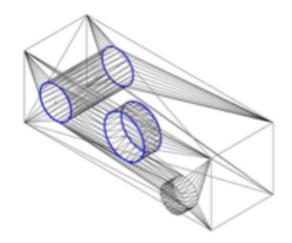

Ein Grundelement (z.B. eine Fläche) wird entlang einer Raumkurve verschoben. Der durchdrungene Raum stellt das neue Objekt dar.

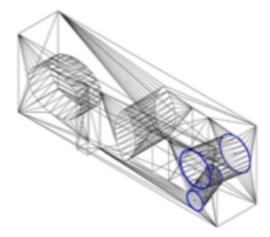
CSG: Operatoren

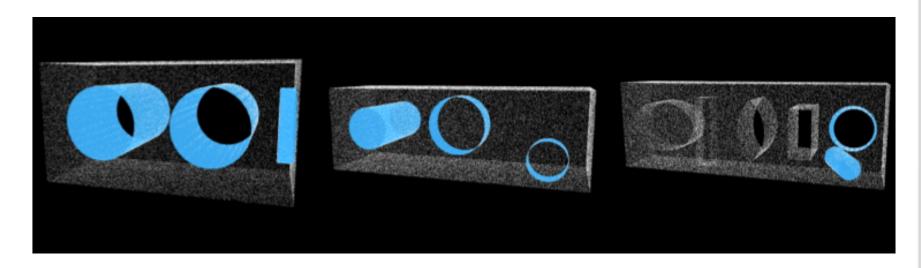

- Speicherung erfolgt als Binär-Baum mit
 - Knoten als Operation
 - linker bzw. rechter Teilbaum als Teil-CSG oder Grundkörper

Umwandlungen zwischen Modelltypen








Beispiele Umwandlungen

Anwendungsgebiete Modelltypen

Anwendungsgebiete für das geometrische Modell

- Punktwolke:
 - Lokalisation, Klassifikation
 - Kartierung (mobile Systeme)
- Mesh:
 - Bewegungsplanung (v.a. Manipulatoren)
 - Dynamische Simulation (komplexe Starrkörper)
- Voxel/Octtree:
 - Bewegungsplanung (v.a. mobile Systeme)
 - Dynamische Simulation elastische Materialien (FEM)
- CSG:
 - CAD/CAE/CAM
 - Dynamische Simulation (einfache Starrkörper)

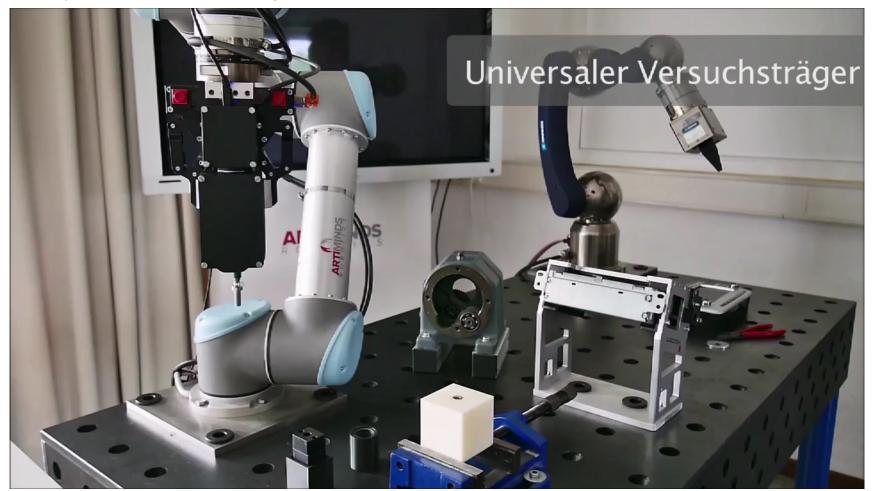
Inhalt

- Motivation: Adaptive Roboteraufgaben
- Objektmodelle
 - Geometrische Beschreibung
 - Zusätzliche Eigenschaften
- Szenenmodelle

Zusätzliche Eigenschaften

Eigenschaften des Objektes mit Geometriebezug

- Masse
- Oberflächeneigenschaften (z.B. Reibung)
- Temperatur
- Steifigkeit
- Greifpunkte
- Verbindungspunkte zur Montage
- Ablagepunkte bei Paletten
- Füllmenge bei Paletten
- Stellung bezüglich eines Referenzobjektes


Stark aufgabenabhängig!

Zusätzliche Eigenschaften

Karlsruhe Institute of Technology

Beispiele zusätzliche Eigenschaften

Inhalt

- Motivation: Adaptive Roboteraufgaben
- Objektmodelle
 - Geometrische Beschreibung
 - Zusätzliche Eigenschaften
- Szenenmodelle

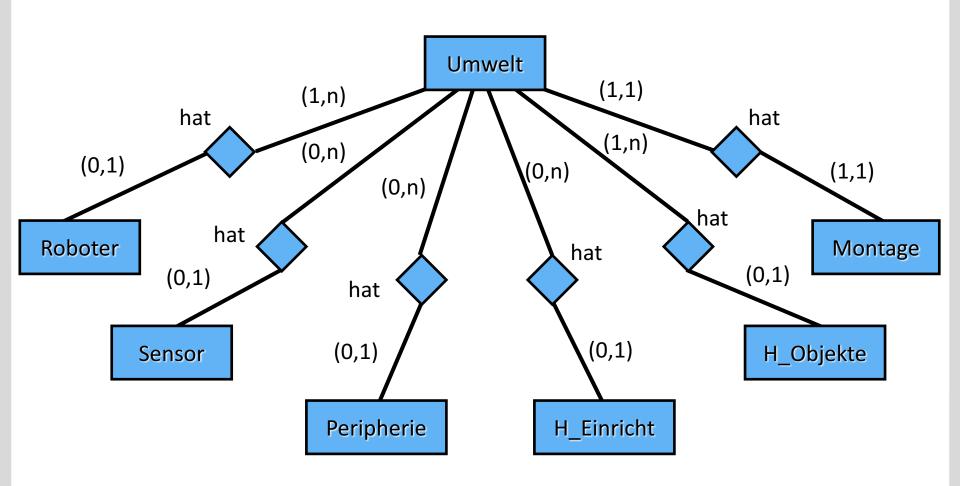
Übersicht Szenenmodelle

- Entity-Relationship-Modelle
- Semantische Netze
- Frame Modelle nach Minsky
- Implicit Shape Models (ISMs)
- Probablistische Object Constellation Models (OCMs)

Entity-Relationship-Modelle (ER)

Modellierkonstrukt	Graphisches Symbol	Beispiel
Objekttyp (Entity set)	Objekttyp- bezeichner	Greifer
Beziehungstyp (Relationship type)	Beziehungstyp- bezeichner	Roboter Achse Achse Achse Achse
Rollen	Rolle A Rolle B	Vorgänger Achse folge Achse Nachfolger
Kardinalität	(0, 1) (0, 1) (0, n) (0, n) (0, n) (0, m)	hat_achse Roboter Achse (1,n) (1,1)

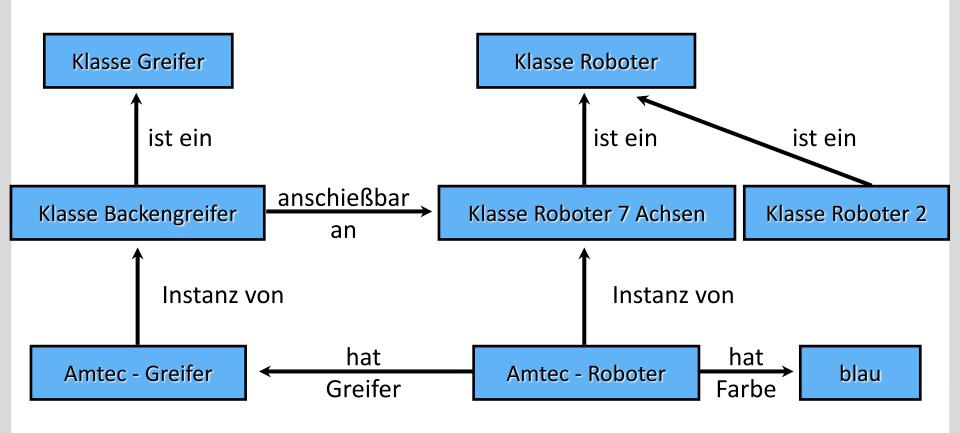
Entity-Relationship-Modelle (ER)



Modellierkonstrukt	Graphisches Symbol	Beispiel
Attribute o beschreibende identifizierende	Attributbezeichner Attributbezeichner	Anz_Finger Greifer Gr_Bezeichnung
Generalisierungs- hierarchie	Objekttyp-Bezeichner Bezeichner Objekttypen (1 - <n>)</n>	Effektor Eff_Typen Greifer Werkzeug

Beispiel eines ER-Modells

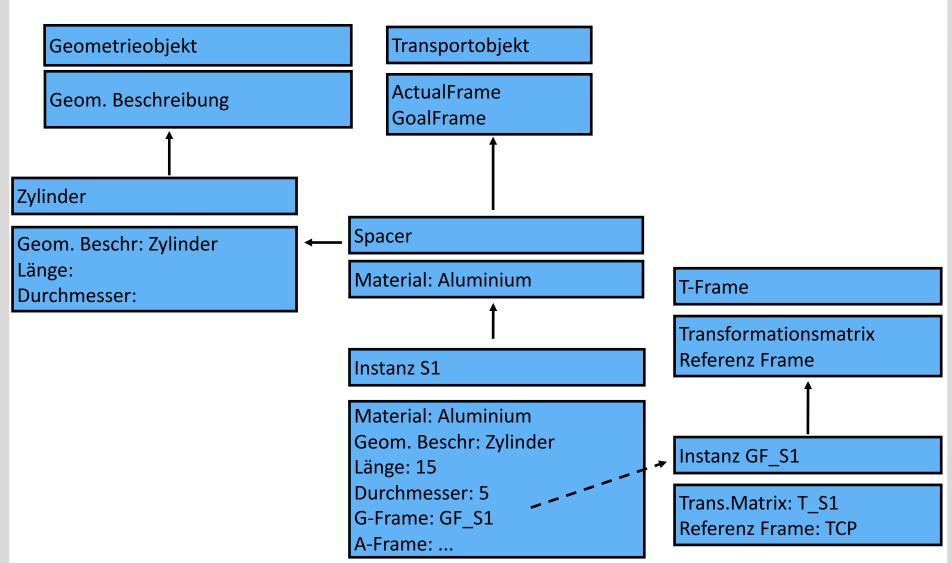
Semantische Netze


Konzept: Objekte und Beziehungen

- Semantisches Netz = gerichteter Graph
- Knoten = Objektklasse oder Einzelobjekt
- gerichtete und benannte Kanten = Beziehungen
- nur zweistellige Beziehungen
- mehrstellige Beziehungen => als eigenes Objekt
- keine Attribute => Attribute als "Wertobjekt"

Beispiel eines Semantischen Netzes

Frame Modell nach Minsky



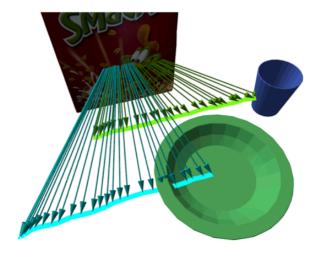
- Frame = Schablone (nicht mit Koordinaten-Frames verwechseln)
- Erfassung der:
 - Eigenschaften von Objekten
 - Einordnung in Hierarchie von Objektklassen
- Leichte Implementierung mit objektorientierten Sprachen
- Frame:
 - beschreibt ein Objekt / Objektklasse
 - enthält eine Menge von Slots
- Slots enthalten:
 - Attribute
 - Verweise auf andere Frames
- Instanzen, Vererbung

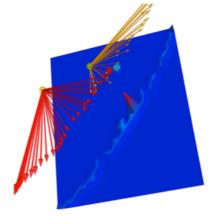
Beispiel eines Frame Modells

Implicit Shape Modell (ISM)

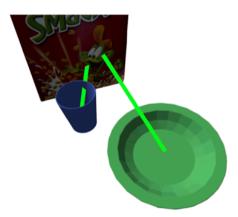
Moderne Szenenbeschreibung, robust bei Varianzen

- Szene besteht aus relativen Transformationsrelationen zwischen Objekten
- ISM ist Variation der Generalisierten Hough Transformation (Maschinensehen)
- Daraus folgt, dass Instanzen der Relationen in buckets abstimmen (voten)
- Baumartige Topologie der relativen Relationen


Implicit Shape Modell (ISM)


Hough voting findet im 3D-Raum statt

Votes werden in einem Voxel-Gitter akkumuliert



WeitereInformationen:Meißner et al.

Implicit Shape Modell (ISM)

Active Scene Recognition for Programming by Demonstration using Next-Best-View Estimates from Hierarchical Implicit Shape Models

Pascal Meißner, Reno Reckling, Valerij Wittenbeck, Sven R. Schmidt-Rohr and Rüdiger Dillmann

Objekt Constellation Modell (OCM)

Kurzvorstellung OCM: probabilistisches Modell

- Probabilistische Szenenrelationen
- Basiert auf Gauss-Mixturen (GMMs) und probabilistischer Graph-Inferenz

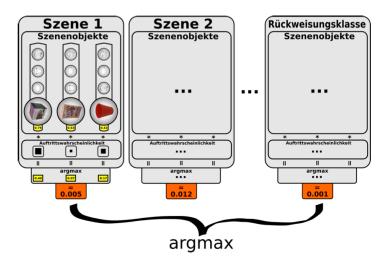
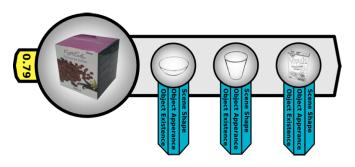



Abbildung 5.4: Eine grafische Darstellung des Szenenmodells. Es wird die Wahrscheinlichkeit einer Reihe von Szenen inklusive der Rückweisungsklasse berechnet. Jede Szene basiert auf einer Reihe von Szenenobjekten, wobei das mit der höchsten gewichteten Wahrscheinlichkeit die Wahrscheinlichkeit der Szene ergibt.

5.6: Das Object Constellation Model beschreibt ein einzelnes Szenenobjekt, also ein Objekt (hier die Kaffeebox) im Kontext einer Szene. Die Slots werden durch die kleinen Kreise rechts symbolisiert, jeder Slot beschreibt ein Objekt der Szene mit den in blau dargestellten Parametern. Der gelbe Kasten gibt an, mit welcher Wahrscheinlichkeit das Szenenobjekt vorliegt.

Weitere Informationen: Gehrung, Meißner et al.

